经济学家开拓了一种试图分析变量之间的格兰杰因果关系的办法,即格兰杰因果关系检验。该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的格兰杰因果关系。他给格兰杰因果关系的定义为“依赖于使用过去某些时点上所有信息的最佳最小二乘预测的方差”。在时间序列情形下,两个经济变量X、Y之间的格兰杰因果关系定义为:若在包含了变量X、Y的过去信息的条件下,对变量Y的预测效果要优于只单独由Y的过去信息对Y进行的预测效果,即变量X有助于解释变量Y的将来变化,则认为变量X是引致变量Y的格兰杰原因。进行格兰杰因果关系检验的一个前提条件是时间序列必须具有平稳性,否则可能会出现虚假回归问题。因此在进行格兰杰因果关系检验之前首先应对各指标时间序列的平稳性进行单位根检验(unit root test)。常用增广的迪基—富勒检验(ADF检验)来分别对各指标序列的平稳性进行单位根检验。
格兰杰因果关系检验的步骤是什么?
(1)将当前的y对所有的滞后项y以及别的什么变量(如果有的话)做回归,即y对y的滞后项yt-1,yt-2,…,yt-q及其他变量的回归,但在这一回归中没有把滞后项x包括进来,这是一个受约束的回归。然后从此回归得到受约束的残差平方和RSSR。
(2)做一个含有滞后项x的回归,即在前面的回归式中加进滞后项x,这是一个无约束的回归,由此回归得到无约束的残差平方和RSSUR。
(3)零假设是H0:α1=α2=…=αq=0,即滞后项x不属于此回归。
(4)为了检验此假设,用F检验,即:它遵循自由度为q和(n-k)的F分布。在这里,n是样本容量,q等于滞后项y的个数,即有约束回归方程中待估参数的个数,k是无约束回归中待估参数的个数。
(5)如果在选定的显著性水平α上计算的F值超过临界值Fα,则拒绝零假设,这样滞后x项就属于此回归,表明x是y的原因。
(6)同样,为了检验y是否是x的原因,可将变量y与x相互替换,重复步骤(1)~(5)。
格兰杰因果检验需要多少数据?
格兰杰因果检验有无限多种数据分析方法,要根据指标的类型、数据格式优劣及数据量多少而定。理想情况下,为了提高准确性,数据的量应该是千万级以上,但如果数据量较少,也可以使用统计方法,从而提高数据分析结论的可靠性。
关键词: 格兰杰因果关系检验的步骤是什么 格兰杰因果检验需要多少数据 格兰杰因果检验一定要通过吗 格兰杰因果检验必须是平稳序列吗